kioskopk.blogg.se

Gravit design software
Gravit design software






Test results on the synthetic data set demonstrate that the gravity anomalies predicted by the forward network can be successfully inverted, and the multitask approach can predict subsurface geology more accurately than the single-task. In this paper, a multitask UNet3+ network is proposed to realize anomaly bodies localization and density contrasts reconstruction simultaneously. By learning multiple related tasks simultaneously, the generalization ability of the model improves, thus enhancing the performance of the main task. Additionally, to mitigate the problem of poor generalization of existing DL inversions, we propose using multitask learning. To evaluate the effectiveness of the forward model, we use the gravity anomalies predicted by the forward network for inversion network training. After training, the network can reproduce gravity anomalies at any observation point. To address this issue, we propose using a neural network to approximate the expensive forward computation with a fast evaluation alternative. However, using DL inversion requires generating a large amount of training data for each geological target and involves the forward calculation of the generated models, which inevitably consumes a large amount of time and storage space. These methods aim to learn the mapping between geological models and gravity anomaly data by training a neural network with geological models as labels. In recent years, the rapid development of deep learning (DL) has enabled the achievement of good results for gravity inversion methods based on DL. Gravity inversion is a process that obtains the spatial structure and physical properties of underground anomalies using surface collected gravity anomaly data.








Gravit design software